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Experiments

● MAPO converges slower than maximum likelihood training, but reaches a better solution. 
● REINFORCE doesn’t make much progress (<10% accuracy).

● First RL-based state-of-the-art method on WikiTableQuestions.
● Competitive to state-of-the-art methods on WikiSQL, which use strong supervision (the 

ground truth programs), while MAPO only uses weak supervision (the final answers).

● MAPO incorporates a memory buffer of promising sequences to compute an unbiased gradient 
estimate with low variance. 

● Memory weight clipping
○ Force the training to pay attention to 

the memory by clipping the weight.
○ Trade off bias in the initial stage for 

faster training. 

● Distributed sampling 
○ Distribute the cost of computing      

and sampling into the actors.
○ Multiple actors each interacting with a 

shard of training set and send 
samples to a learner to update the 
model.  

● Systematic exploration
○ Use a bloom filter to force the exploration to generate new programs.
○ Trade off memory for more efficient exploration.

Which nation won the most silver medal?
● Correct program:

● Spurious programs:

(argmax rows “Silver”)
(hop v1 “Nation”)

(argmax rows “Gold”)
(hop v1 “Nation”)

(argmax rows “Bronze”)
(hop v1 “Nation”)

● Spurious programs: right answer for the wrong reason

● Comparison of MAPO, MML, IML with a simplified example

Problem: Learning to generate sequences     with high return         via 
policy optimization
(    = a program)
(        = correct or not) 

Key idea: Express the expected return objective as the sum of two expectations inside 
and outside a memory buffer of sequences
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