
Memory Augmented Policy Optimization

Existing Solutions

Program Synthesis / Semantic Parsing

Memory Augmented Policy Optimization (MAPO) for Program Synthesis and Semantic Parsing
Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le, Ni Lao

Experiments

● MAPO converges slower than maximum likelihood training, but reaches a better solution.
● REINFORCE doesn’t make much progress (<10% accuracy).

● First RL-based state-of-the-art method on WikiTableQuestions.
● Competitive to state-of-the-art methods on WikiSQL, which use strong supervision (the

ground truth programs), while MAPO only uses weak supervision (the final answers).

● MAPO incorporates a memory buffer of promising sequences to compute an unbiased gradient
estimate with low variance.

● Memory weight clipping
○ Force the training to pay attention to

the memory by clipping the weight.
○ Trade off bias in the initial stage for

faster training.

● Distributed sampling
○ Distribute the cost of computing

and sampling into the actors.
○ Multiple actors each interacting with a

shard of training set and send
samples to a learner to update the
model.

● Systematic exploration
○ Use a bloom filter to force the exploration to generate new programs.
○ Trade off memory for more efficient exploration.

Which nation won the most silver medal?
● Correct program:

● Spurious programs:

(argmax rows “Silver”)
(hop v1 “Nation”)

(argmax rows “Gold”)
(hop v1 “Nation”)

(argmax rows “Bronze”)
(hop v1 “Nation”)

● Spurious programs: right answer for the wrong reason

● Comparison of MAPO, MML, IML with a simplified example

Problem: Learning to generate sequences with high return via
policy optimization
(= a program)
(= correct or not)

Key idea: Express the expected return objective as the sum of two expectations inside
and outside a memory buffer of sequences

Question 1 Question 2

correct spurious spurious spurious

Iterative Maximum Likelihood
(IML)

Maximum Marginal Likelihood
(MML)

MAPO

Model Probability

0.5 0.5 0.5 0.5

0.8 0.2 0.5 0.5

0.6 0.15 0.1 0.1

0.6 0.15 0.1 0.1

