Memory Augmented Policy Optimization (MAPO) for Program Synthesis and Semantic Parsing

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le, Ni Lao

Memory Augmented Policy Optimization

Key idea: Express the expected return objective as the sum of two expectations inside and outside a memory buffer of sequences $\mathcal{B} \equiv\left\{\left(\vec{a}_{i}, r_{i}\right)\right\}_{i=1}^{N}$

$$
O(\pi)=\underbrace{\sum_{\vec{a}_{i} \in \mathcal{B}} \pi\left(\vec{a}_{i}\right) r_{i}}_{\text {Expectation inside } \mathcal{B}}+\underbrace{\sum_{\vec{a} \notin \mathcal{B}} \pi(\vec{a}) R(\vec{a})}_{\text {Expectation outside } \mathcal{B}}
$$

- MAPO incorporates a memory buffer of promising sequences to compute an unbiased gradient estimate with low variance.

$$
\nabla_{\theta} O\left(\pi_{\theta}\right)=\underbrace{\sum_{\vec{a}_{i} \in \mathcal{B}} \pi_{\theta}\left(\vec{a}_{i}\right) r_{i} \nabla_{\theta} \log \pi_{\theta}\left(\vec{a}_{i}\right)}_{\text {Expectation inside } \mathcal{B}}+\underbrace{\sum_{\vec{a} \notin \mathcal{B}} \pi_{\theta}(\vec{a}) R(\vec{a}) \nabla_{\theta} \log \pi_{\theta}(\vec{a})}_{\text {Expectation outside } \mathcal{B}}
$$

- Memory weight clipping Force the training to pay attention to the memory by clipping the weight. Tade of bias in the initial stage for
$\pi_{\mathcal{B}}^{c}=\max \left(\pi_{\mathcal{B}}, \alpha\right)$

- Systematic exploration

Use a bloom filter to force the exploration to generate new programs. Trade off memory for more efficient exploration.

- Distributed sampling

Distribute the cost of computing $\pi_{\mathcal{B}}$ and sampling into the actors. Multiple actors each interacting with a amples to a learn tand send model.

Experiments

	E.S.	Dev.	Test
Pasupat \& Liang (2015)		37.0	37.1
Neelakantan et al. (2017)	1	34.1	34.2
Neelakantan et al. (2017)	15	37.5	37.7
Haug etal. (2017)	1		34.8
Haug et al. (2017)	15		38.7
Zhang etal. (2017)		40.4	43.7

lys supervis	Dev	Test
Zhong etal. (2017)	${ }^{5} 60.8$	59.4 668
Wane eal (2017)		
asetal 20		
erat (2018)		${ }_{\substack{13.5 \\ 74.6}}$
Dons \& Lapata 2018)	$\overline{5} 79.0$	78.5
Weakly supervised	Dev.	Test
MAPO ${ }_{\text {M }}^{\text {MAPO (enemble of } 5 \text {) }}$	${ }^{71.6 \pm 0}$	$\underset{7}{71.8 \pm 0.9}$

- First RL-based state-of-the-art method on WikiTableQuestions.
- Competitive to state-of-the-art methods on WikiSQL, which use strong supervision (the ground truth programs), while MAPO only uses weak supervision (the final answers)

- MAPO converges slower than maximum likelihood training, but reaches a better solution - REINFORCE doesn't make much progress (<10\% accuracy).
- Spurious programs: right answer for the wrong reason

- Comparison of MAPO, MML, IML with a simplified example

	Question 1		Question 2	
	correct	spurious	spurious	spurious
Iterative Maximum Likelihood (IML)		0.5 -	0.5 -	0.5 免
Maximum Marginal Likelihood (MML)		0.2	0.5 息	0.5 -
MAPO		0.15	0.1	0.1
Model Probability	0.6	0.15	0.1	0.1

